Double Dissociation of Auditory Attention Span and Visual Attention in Long-Term Survivors of Childhood Cerebellar Tumor: A Deterministic Tractography Study of the Cerebellar-Frontal and the Superior Longitudinal Fasciculus Pathways

Alyssa S. Ailion,Tricia Z. King,Simone R. Roberts,Brian Tang,Jessica A. Turner,Christopher M. Conway and Bruce Crosson

Abstract

Objective:Right cerebellar-left frontal (RC-LF) white matter integrity (WMI) has been associated with working memory. However, prior studies have employed measures of working memory that include processing speed and attention. We examined the relationships between the RC-LF WMI and processing speed, attention, and working memory to clarify the relationship of RC-LF WMI with a specific cognitive function. Right superior longitudinal fasciculus II (SLF II) WMI and visual attention were included as a negative control tract and task to demonstrate a double dissociation.

Methods:Adult survivors of childhood brain tumors [n = 29, age: M = 22 years (SD = 5), 45% female] and demographically matched controls were recruited (n = 29). Tests of auditory attention span, working memory, and visual attention served as cognitive measures. Participants completed a 3-T MRI diffusion-weighted imaging scan. Fractional anisotropy (FA) and radial diffusivity (RD) served as WMI measures. Partial correlations between WMI and cognitive scores included controlling for type of treatment.

Results:A correlational double dissociation was found. RC-LF WMI was associated with auditory attention (FA: r = .42, p = .03; RD: r = −.50, p = .01) and was not associated with visual attention (FA: r = −.11, p = .59; RD: r = −.11, p = .57). SLF II FA WMI was associated with visual attention (FA: r = .44, p = .02; RD: r = −.17, p = .40) and was not associated with auditory attention (FA: r = .24, p = .22; RD: r = −.10, p = .62).

Conclusions:The results show that RC-LF WMI is associated with auditory attention span rather than working memory per se and provides evidence for a specificity based on the correlational double dissociation.

References

AilionA.S.HortmanK., & KingT.Z. (2017). Childhood brain tumors: A systematic review of the structural neuroimaging literatureNeuropsychology Review27220244. doi: 10.1007/s11065-017-9352-6 CrossRefGoogle ScholarPubMed
AilionA.S.KingT.Z.WangL.FoxM.E.MaoH.MorrisR.M., & CrossonB. (2016). Cerebellar atrophy in adult survivors of childhood cerebellar tumorJournal of International Neuropsychological Society22(5), 501511. doi: 10.1017/s1355617716000138 CrossRefGoogle ScholarPubMed
AilionA.S.RobertsS.R.CrossonB., & KingT.Z. (2019). Neuroimaging of the component white matter connections and structures within the cerebellar-frontal pathway in posterior fossa tumor survivorsNeuroImage. Clinical23101894. doi: 10.1016/j.nicl.2019.101894 CrossRefGoogle ScholarPubMed
AukemaE.J.CaanM.W.OudhuisN.MajoieC.B.VosF.M.RenemanL., … Schouten-van MeeterenA.Y. (2009). White matter fractional anisotropy correlates with speed of processing and motor speed in young childhood cancer survivorsInternational Journal of Radiation Oncology, Biology, Physics74(3), 837843. doi: 10.1016/j.ijrobp.2008.08.060 CrossRefGoogle ScholarPubMed
BaddeleyA. (1996). The fractionation of working memoryProceedings of the National Academy of Sciences93(24), 1346813472. Retrieved from http://www.pnas.org/content/93/24/13468.abstract CrossRefGoogle ScholarPubMed
BartzokisG.LuP.H.HeydariP.CouvretteA.LeeG.J.KalashyanG., … AltshulerL.L. (2012). Multimodal magnetic resonance imaging assessment of white matter aging trajectories over the lifespan of healthy individualsBiological Psychiatry72(12), 10261034. doi: 10.1016/j.biopsych.2012.07.010 CrossRefGoogle ScholarPubMed
BecharaA.TranelD.DamasioH.AdolphsR.RocklandC., & DamasioA.R. (1995). Double dissociation of conditioning and declarative knowledge relative to the amygdala and hippocampus in humansScience (New York, N.Y.)269(5227), 11151118https://doi.org/10.1126/science.7652558 CrossRefGoogle ScholarPubMed
BenjaminiY. & HochbergY. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testingJournal of the Royal Statistical Society57(1), 289300. doi: 10.2307/2346101 Google Scholar
BennettC.M.WolfordG.L., & MillerM.B. (2009). The principled control of false positives in neuroimagingSocial Cognitive and Affective Neuroscience4, 417422. doi: 10.1093/scan/nsp053 CrossRefGoogle Scholar
Ben-YehudahG.GuedicheS., and FiezJ.E. (2007). Cerebellar contributions to verbal working memory: Beyond cognitive theoryThe Cerebellum6, 193201.CrossRefGoogle Scholar
BisleyJ.W. and GoldbergM.E. (2003). Neuronal activity in the lateral intraparietal area and spatial attentionScience2998186.CrossRefGoogle Scholar
BlackF.W., & StrubR.L. (1978). Digit repetition performance in patients with focal brain damageCortex14(1), 1221.CrossRefGoogle ScholarPubMed
BlumenfeldH. (2010). Neuroanatomy through Clinical Cases (2nd ed.). Sunderland, MA: Sinauer Associates, Inc., ISBN 978-0-87893.Google Scholar
BohsaliA.TriplettW.SudhyadhomA.GullettJ.M.McGregorK.FitzGeraldD.B., … CrossonB. (2015). Broca’s area – Thalamic connectivityBrain and Language141C8088. doi: 10.1016/j.bandl.2014.12.001 CrossRefGoogle Scholar
BrodmannK. (1909). Vergleichende lokalisationslehre der großhirnrinde: In ihren prinzipienLeipzig, GermanyBarth.Google Scholar
BrownJ. (1958). Some tests of the decay theory of immediate memoryQuarterly Journal of Experimental Psychology10(1), 1221. doi: 10.1080/17470215808416249.CrossRefGoogle Scholar
BunceD. & MacreadyA. (2005). Processing speed, executive function, and age differences in remembering and knowingThe Quarterly Journal of Experimental Psychology A58(1), 155168. doi: 10.1080/02724980443000197 CrossRefGoogle ScholarPubMed
CascioC.J.GerigG., & PivenJ. (2007). Diffusion tensor imaging: Application to the study of the developing brainJournal of the American Academy of Child and Adolescent Psychiatry46(2), 213223.CrossRefGoogle Scholar
CataniM.Dell’acquaF.VerganiF.MalikF.HodgeH.RoyP., … Thiebaut de SchottenM. (2012). Short frontal lobe connections of the human brainCortex48(2), 273291. doi: 10.1016/j.cortex.2011.12.001 CrossRefGoogle ScholarPubMed
ChenS.H. & DesmondJ.E. (2005). Cerebrocerebellar networks during articulatory rehearsal and verbal working memory tasksNeuroimage24(2), 332338.CrossRefGoogle ScholarPubMed
Colon-PerezL.M.SpindlerC.GoicocheaS.TriplettW.ParekhM.MontieE., … MareciT.H. (2015). Dimensionless, Scale Invariant, Edge Weight Metric for the Study of Complex Structural NetworksPlos One10(7), 129. doi: 10.1371/journal.pone.0131493 CrossRefGoogle Scholar
DelisD.C.KaplanE., & KramerJ.H. (2001). Delis-Kaplan (D-KEFS) Executive Function System Technical ManualSan Antonio, TXThe Psychological Corporation.Google Scholar
DennisM.FrancisD.J.CirinoP.T.SchacharR.BarnesM.A., & FletcherJ.M. (2009). Why IQ is not a covariate in cognitive studies of neurodevelopmental disordersJournal of the International Neuropsychology Society15(3), 331343. doi: 10.1017/S1355617709090481 CrossRefGoogle Scholar
DesikanR.S.SegonneF.FischlB.QuinnB.T.DickersonB.C.BlackerD., … KillianyR.J. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interestNeuroimage31(3), 968980. doi: 10.1016/j.neuroimage.2006.01.021 CrossRefGoogle ScholarPubMed
DesmondJ.GabrieliJ.WagnerA.GinierB., & GloverG. (1997). Lobular patterns of cerebellar activation in verbal working-memory and finger-tapping tasks as revealed by functional MRIThe Journal of Neuroscience17(24), 96759685.CrossRefGoogle ScholarPubMed
DoricchiF & TomaiuoloF. (2003). The anatomy of neglect without hemianopia: a key role for parietal–frontal disconnection? NeuroReport14, 22392243.CrossRefGoogle Scholar
DoricchiF.Thiebaut de SchottenM.TomaiuoloF., & BartolomeoP. (2008). White matter (dis)connections and gray matter (dys)functions in visual neglect: gaining insights into the brain networks of spatial awarenessCortex44(8), 983995. doi: 10.1016/j.cortex.2008.03.006 CrossRefGoogle ScholarPubMed
FordA.Colon-PerezL.TriplettW.T.GullettJ.M.MareciT.H., & FitzgeraldD.B. (2013). Imaging white matter in human brainstemFrontiers in Human Neuroscience7(July), 400. doi: 10.3389/fnhum.2013.00400 CrossRefGoogle ScholarPubMed
FriedericiA.D.HahneA., & von CramonD.Y. (1998). First-pass versus second-pass parsing processes in a Wernicke’s and a Broca’s aphasic: electrophysiological evidence for a double dissociationBrain and Language62(3), 311341https://doi.org/10.1006/brln.1997.1906 CrossRefGoogle Scholar
GertonB.K.BrownT.T.Meyer-LindenbergA.KohnP.HoltJ.L.OlsenR.K., & BermanK.F. (2004). Shared and distinct neurophysiological components of the digits forward and backward tasks as revealed by functional neuroimagingNeuropsychologia42(13), 17811787. doi: 10.1016/j.neuropsychologia.2004.04.023 CrossRefGoogle ScholarPubMed
HoaglinD.C. & IglewiczB. (1987). Fine tuning some resistant rules for outlier labelingJournal of American Statistical Association8211471149.CrossRefGoogle Scholar
HoeftF.Barnea-GoralyN.HaasB.W.GolaraiG.NgD.MillsD., … ReissA.L. (2007). More is not always better: increased fractional anisotropy of superior longitudinal fasciculus associated with poor visuospatial abilities in Williams syndromeJournal of Neuroscience27(44), 1196011965. doi: 10.1523/jneurosci.3591-07.2007 CrossRefGoogle Scholar
JayakarR.KingT.Z.MorrisR., & NaS. (2015). Hippocampal volume and auditory attention on a verbal memory task with adult survivors of pediatric brain tumorNeuropsychology29(2), 303319.CrossRefGoogle ScholarPubMed
JianB. & VemuriB.C. (2007a). A unified computational framework for deconvolution to reconstruct multiple fibers from diffusion weighted MRIIEEE Transactions on Medical Imaging26(11), 1464–71. doi: 10.1109/TMI.2007.907552 CrossRefGoogle ScholarPubMed
JianB. & VemuriB.C. (2007b). Multi-fiber reconstruction from diffusion mri using mixture of Wisharts and Sparse DeconvolutionInformation Processing in Medical Imaging20384395.CrossRefGoogle ScholarPubMed
JianB.VemuriB.C.ÖzarslanE.CarneyP.R., & MareciT.H. (2007). A novel tensor distribution model for the diffusion-weighted MR signalNeuroImage37(1), 164–76. doi: 10.1016/j.neuroimage.2007.03.074 CrossRefGoogle ScholarPubMed
JissendiPBaudryS, & BaleriauxD (2008). Diffusion tensor imaging (DTI) and tractography of the cerebellar projections to prefrontal and posterior parietal cortices: A study at 3T. Journal of Neuroradiology, 35, 4250.CrossRefGoogle Scholar
KamaliA.FlandersA.E.BrodyJ.HunterJ.V., & HasanK.M. (2014). Tracing superior longitudinal fasciculus connectivity in the human brain using high resolution diffusion tensor tractographyBrain Structure and Function219(1), 269281. doi: 10.1007/s00429-012-0498-y CrossRefGoogle ScholarPubMed
KarlsgodtK.H.van ErpT.G.PoldrackR.A.BeardenC.E.NuechterleinK.H., & CannonT.D. (2008). Diffusion tensor imaging of the superior longitudinal fasciculus and working memory in recent-onset schizophreniaBiological Psychiatry63(5), 512518. doi: 10.1016/j.biopsych.2007.06.017 CrossRefGoogle ScholarPubMed
KellyR.M. & StrickP.L. (2003). Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primateThe Journal of neuroscience: The official journal of the Society for Neuroscience2384328444.CrossRefGoogle ScholarPubMed
KhongP.L.KwongD.L.ChanG.C.ShamJ.S.ChanF.L., & OoiG.C. (2003). Diffusion-tensor imaging for the detection and quantification of treatment-induced white matter injury in children with medulloblastoma: A pilot studyAJNR. American Journal of Neuroradiology24(4), 734740.Google ScholarPubMed
KieferM.ApelA., & WeisbrodM. (2002). Arithmetic fact retrieval and working memory in schizophreniaSchizophrenia Research53(3), 219227.CrossRefGoogle Scholar
KingT.Z.AilionA.S.FoxM.E., & HufstetlerS.M. (2017). Neurodevelopmental model of long-term outcomes of adult survivors of childhood brain tumorsChild Neuropsychology121. doi: 10.1080/09297049.2017.1380178 Google ScholarPubMed
KingT.Z. & Na.S. (2016). Cumulative Neurological Factors Predict Long-term Outcomes in Adult Survivors of Childhood Brain TumorsChild Neuropsychology22(6), 748760. doi: 10.1080/09297049.2015.1049591 CrossRefGoogle Scholar
KingT.Z.NaS., & MaoH. (2015a). Neural underpinnings of working memory in adult survivors of childhood brain tumorsJournal of the International Neuropsychological Society21(7), 494505. doi: 10.1017/S135561771500051X CrossRefGoogle ScholarPubMed
KingT.Z.WangL., & MaoH. (2015b). Disruption of white matter integrity in adult survivors of childhood brain tumors: Correlates with long-term intellectual outcomesPLOS One10(7), e0131744. doi: 10.1371/journal.pone.0131744 CrossRefGoogle ScholarPubMed
LawN.BouffetE.LaughlinS.LaperriereN.BriereM.E.StrotherD., … MabbottD. (2011). Cerebello-thalamo-cerebral connections in pediatric brain tumor patients: impact on working memoryNeuroImage56(4), 22382248. doi: 10.1016/j.neuroimage.2011.03.065 CrossRefGoogle ScholarPubMed
LawN.GreenbergM.BouffetE.LaughlinS.TaylorM.D.MalkinD., … MabbottD. (2015a). Visualization and segmentation of reciprocal cerebrocerebellar pathways in the healthy and injured brainHuman Brain Mapping36(7), 26152628. doi: 10.1002/hbm.22795 CrossRefGoogle ScholarPubMed
LawN.GreenbergM.BouffetE.TaylorM.D.LaughlinS.StrotherD., … MabbottD.J. (2012). Clinical and neuroanatomical predictors of cerebellar mutism syndromeNeuro-Oncology14(10), 12941303. doi: 10.1093/neuonc/nos160 CrossRefGoogle ScholarPubMed
LawN.SmithM.L.GreenbergM.BouffetE.TaylorM.D.LaughlinS., … MabbottD. (2015b). Executive function in paediatric medulloblastoma: The role of cerebrocerebellar connectionsJournal of Neuropsychology. doi: 10.1111/jnp.12082 Google ScholarPubMed
LezakM.D.HowiesonD.B.BiglerE., & TranelD. (2012Neuropsychological Assessment5th EditionNew YorkOxford University Press.Google Scholar
MakrisN.KennedyD.N.McInerneyS.SorensenA.G.WangR.CavinessV.S. Jr, & PandyaD.N. (2005). Segmentation of subcomponents within the superior longitudinal fascicle in humans: A quantitative, invivo, DT-MRI studyCerebral Cortex 15854869.CrossRefGoogle Scholar
MarvelC.L. & DesmondJ.E. (2010). The contributions of cerebro-cerebellar circuitry to executive verbal working memoryCortex46(7), 880895. doi: 10.1016/j.cortex.2009.08.017 CrossRefGoogle ScholarPubMed
MerchantT.E.HuaC.H.ShuklaH.YingX.NillS., & OelfkeU. (2008). Proton versus photon radiotherapy for common pediatric brain tumors: Comparison of models of dose characteristics and their relationship to cognitive functionPediatric Blood & Cancer51(1), 110117. doi: 10.1002/pbc.21530 CrossRefGoogle ScholarPubMed
MesulamM.M. (1981). A cortical network for directed attention and unilateral neglectAnnals of Neurology10309325.CrossRefGoogle ScholarPubMed
MicklewrightJ.L.KingT.Z.MorrisR.D., & KrawieckiN. (2008). Quantifying pediatric neuro-oncology risk factors: development of the neurological predictor scaleJournal of Child Neurology23(4), 455458. doi: 10.1177/0883073807309241 CrossRefGoogle ScholarPubMed
MillerG.A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing informationPsychological Review63(2), 8197. doi: 10.1037/h0043158 CrossRefGoogle ScholarPubMed
MillerD.C. (2013). Essentials of School Neuropsychological Assessment (2nd ed.). Hoboken, NJJohn Wiley & Sons, Inc.Google Scholar
MukherjeeP.BermanJ.I.ChungS.W.HessC.P., & HenryR.G. (2008). Diffusion tensor MR imaging and fiber tractography: theoretic underpinningsAJNR American Journal of Neuroradiology29(4), 632641. doi: 10.3174/ajnr.A1051 CrossRefGoogle ScholarPubMed
MulhernR.K.PalmerS.L.ReddickW.E.GlassJ.O.KunL.E.TaylorJ., … GajjarA. (2001). Risks of young age for selected neurocognitive deficits in medulloblastoma are associated with white matter lossJournal of Clinical Oncology19(2), 472479.CrossRefGoogle ScholarPubMed
NaidichT.P.DuvernoyH.M.DelmanB.N.SorensenA.G.KolliasS.S., & HaackeE.M. (2009). Duvernoy’s Atlas of the Human Brain Stem and Cerebellum High-Field MRI: Surface Anatomy, Internal Structure, Vascularization and 3D Sectional AnatomyWien, AustriaSpringer CrossRefGoogle Scholar
NomuraE.M.GrattonC.VisserR.M.KayserA.PerezF., & D’EspositoM. (2010). Double dissociation of two cognitive control networks in patients with focal brain lesionsProceedings of the National Academy of Sciences of the United States of America107(26), 1201712022. doi: 10.1073/pnas.1002431107 CrossRefGoogle ScholarPubMed
OnoM.KubikS., & AbernatheyC.D. (1990). Atlas of the Cerebral SulciNew YorkThieme.Google Scholar
OsborneJ.W. & OverbayA. (2004). The power of outliers (and why researchers should always check for them)Practical Assessment, Research & Evaluation9(6), 18.Google Scholar
OstromQ.T.de BlankP.M.KruchkoC.PetersenC.M.LiaoP.FinlayJ.L., … Barnholtz-SloanJ.S. (2015). Alex’s lemonade stand foundation infant and childhood primary brain and central nervous system tumors diagnosed in the United States in 2007-2011Neuro-oncology16(Suppl 10), x1–x36. doi: 10.1093/neuonc/nou327 CrossRefGoogle ScholarPubMed
PalmerS.L. (2008). Neurodevelopmental impact on children treated for medulloblastoma: a review and proposed conceptual modelDevelopmental Disabilities Research Reviews14(3), 203210. doi: 10.1002/ddrr.32 CrossRefGoogle ScholarPubMed
PalmerS.L.GlassJ.O.LiY.OggR.QaddoumiI.ArmstrongG.T., … ReddickW.E. (2012). White matter integrity is associated with cognitive processing in patients treated for a posterior fossa brain tumorNeuro-oncology14(9), 11851193. doi: 10.1093/neuonc/nos154 CrossRefGoogle ScholarPubMed
PalmerS.L.ReddickW.E.GlassJ.O.GajjarA.GoloubevaO., & MulhernR.K. (2002). Decline in corpus callosum volume among pediatric patients with medulloblastoma: longitudinal MR imaging studyAJNR American Journal of Neuroradiology23(7), 10881094.Google ScholarPubMed
PetersonL.R. & PetersonM.J. (1959). Short-term retention of individual verbal itemsMulhern. doi: 10.1037/h0049234. PMID 14432252.Google ScholarPubMed
ReddickW.E.RussellJ.M.GlassJ.O.et al. (2000). Subtle white matter volume differences in children treated for medulloblastoma with conventional or reduced-dose cranial-spinal irradiationMagnetic Resonance Imaging18787793.CrossRefGoogle ScholarPubMed
ReddickW.E.GlassJ.O.PalmerS.L.WuS.GajjarA.LangstonJ.W., … MulhernR.K. (2005). Atypical white matter volume development in children following craniospinal irradiationNeuro-oncology7(1), 1219. doi: 10.1215/S1152851704000079 CrossRefGoogle ScholarPubMed
ReinholdH.S.CalvoW.HopewellJ.W., & Van Den BregA.P. (1990). Development of blood vessel-related radiation damage in the fimbria of the central nervous systemInternational Journal of Radiation Oncology Biology Physics183742.CrossRefGoogle ScholarPubMed
RiggsL.BouffetE.LaughlinS.LaperriereN.LiuF.SkocicJ., … MabbottD.J. (2014). Changes to memory structures in children treated for posterior fossa tumorsJournal of the International Neuropsychological Society20(2), 168180. doi: 10.1017/s135561771300129x CrossRefGoogle ScholarPubMed
RobertsS.R. (2017). The left hemisphere’s structural connectivity for the inferior frontal gyrus, striatum, and thalamus, and intra-thalamic topography. (Master’s thesis). Georgia State University, Atlanta, GA.Google Scholar
RueckriegelS.M.BruhnH.ThomaleU.W., & Hernaiz DrieverP. (2015). Cerebral white matter fractional anisotropy and tract volume as measured by MR imaging are associated with impaired cognitive and motor function in pediatric posterior fossa tumor survivorsPediatric Blood & Cancer62(7), 12521258. doi: 10.1002/pbc.25485 CrossRefGoogle ScholarPubMed
ShanZ.Y.LiuJ.Z.GlassJ.O.GajjarA.LiC.S., & ReddickW.E. (2006). Quantitative morphologic evaluation of white matter in survivors of childhood medulloblastomaMagnetic Resonance Imaging24(8), 10151022. doi: 10.1016/j.mri.2006.04.015 CrossRefGoogle ScholarPubMed
ShiffrinR.M. & NosofskyR.M. (1994). Seven plus or minus two: A commentary on capacity limitationsPsychological Review101357361.CrossRefGoogle ScholarPubMed
SmithA. (1982). Symbol Digit Modality TestLos Angeles, CAWestern Psychological Services.Google Scholar
SmithK.M. (2016). Corpus callosum and word reading in adult survivors of childhood posterior fossa tumors. (Doctoral dissertation). Georgia State University, Atlanta, GA.Google Scholar
SongS.K.YoshinoJ.LeT.Q.LinS.J.SunS.W.CrossA.H., & ArmstrongR.C. (2005). Demyelination increases radial diffusivity in corpus callosum of mouse brainNeuroimage26132140.CrossRefGoogle ScholarPubMed
SpreenO. & StraussE. (1998). A Compendium of Neuropsychological Tests: Administration, Norms, and Commentary (2nd ed.). New York, NYOxford University Press.Google Scholar
StussD.StethemL., & PelchatG. (1988). Three tests of attention and rapid information processing: An extensionClinical Neuropsychologist2(3), 246250.CrossRefGoogle Scholar
TaiwoZ.NaS., & KingT.Z. (2017The Neurological Predictor Scale: A predictive tool for neurocognitive late effects in survivors of childhood brain tumorsPediatric Blood and Cancer64(1), 172179. doi: 10.1002/pbc.26203 CrossRefGoogle Scholar
Thiebaut de SchottenM.Dell’AcquaF.ForkelS.J.SimmonsA.VerganiF.MurphyD.G., & CataniM. (2011). A lateralized brain network for visuospatial attentionNatural Neuroscience14(10), 12451246. doi: 10.1038/nn.2905 CrossRefGoogle ScholarPubMed
TurkenA.U. & DronkersN.F. (2011). The neural architecture of the language comprehension network: Converging evidence from lesion and connectivity analysesFrontiers Systems Neuroscience51. doi: 10.3389/fnsys.2011.00001 CrossRefGoogle ScholarPubMed
UrbanskiM.Thiebaut de SchottenM.RodrigoS.CataniM.OppenheimC.TouzeE.ChokronS.MederJ.-F.LevyR.DuboisB., & BartolomeoP. (2008). Brain networks of spatial awareness: Evidence from diffusion tensor imaging tractographyJournal of Neurology, Neurosurgery and Psychiatry79598601.CrossRefGoogle ScholarPubMed
ViallonM.CuvinciucV.DelattreB.MerliniL.Barnaure-NachbarI.Toso-PatelS., … HallerS. (2015). State-of-the-art MRI techniques in neuroradiology: Principles, pitfalls, and clinical applicationsNeuroradiology57(5), 441467. doi: 10.1007/s00234-015-1500-1 CrossRefGoogle ScholarPubMed
WaxmanS.G. (2009). Clinical NeuroanatomyNew YorkMcGraw-Hill Education.Google Scholar
WechslerD. (1997). Wechsler Memory Scale – Third Edition. ManualSan Antonio, TXThe Psychological Corporation.Google Scholar
WechslerD. (1999). WASI ManualSan AntonioPsychological Corporation.Google Scholar
WeinbergJ.DillerL.GerstmanL., & SchulmanP. (1972). Digit span in right and left hemiplegicsJournal of Clinical Psychology28(3), 361.3.0.CO;2-5>CrossRefGoogle ScholarPubMed
WolfeK.R.Madan-SwainA., & KanaR.K. (2012). Executive dysfunction in pediatric posterior fossa tumor survivors: a systematic literature review of neurocognitive deficits and interventionsDevelopment Neuropsychology37(2), 153175. doi: 10.1080/87565641.2011.632462 CrossRefGoogle ScholarPubMed
WoodsR.P.GraftonS.T.HolmesC.J.CherryS.R., & MazziottaJ.C. (1998). Automated image registration: I. General methods and intrasubject, intramodality validationJournal of Computer Assisted Tomography22139152.CrossRefGoogle ScholarPubMed
ZhangJ.X.LeungH.C., & JohnsonM.K. (2003). Frontal activations associated with accessing and evaluating information in working memory: An fMRI studyNeuroimage20(3), 15311539.CrossRefGoogle Scholar

Double Dissociation of Auditory Attention Span and Visual Attention in Long-Term Survivors of Childhood Cerebellar Tumor: A Deterministic Tractography Study of the Cerebellar-Frontal and the Superior Longitudinal Fasciculus Pathways

Alyssa S. Ailion,Tricia Z. King,Simone R. Roberts,Brian Tang,Jessica A. Turner,Christopher M. Conway and Bruce Crosson

Abstract

Objective:Right cerebellar-left frontal (RC-LF) white matter integrity (WMI) has been associated with working memory. However, prior studies have employed measures of working memory that include processing speed and attention. We examined the relationships between the RC-LF WMI and processing speed, attention, and working memory to clarify the relationship of RC-LF WMI with a specific cognitive function. Right superior longitudinal fasciculus II (SLF II) WMI and visual attention were included as a negative control tract and task to demonstrate a double dissociation.

Methods:Adult survivors of childhood brain tumors [n = 29, age: M = 22 years (SD = 5), 45% female] and demographically matched controls were recruited (n = 29). Tests of auditory attention span, working memory, and visual attention served as cognitive measures. Participants completed a 3-T MRI diffusion-weighted imaging scan. Fractional anisotropy (FA) and radial diffusivity (RD) served as WMI measures. Partial correlations between WMI and cognitive scores included controlling for type of treatment.

Results:A correlational double dissociation was found. RC-LF WMI was associated with auditory attention (FA: r = .42, p = .03; RD: r = −.50, p = .01) and was not associated with visual attention (FA: r = −.11, p = .59; RD: r = −.11, p = .57). SLF II FA WMI was associated with visual attention (FA: r = .44, p = .02; RD: r = −.17, p = .40) and was not associated with auditory attention (FA: r = .24, p = .22; RD: r = −.10, p = .62).

Conclusions:The results show that RC-LF WMI is associated with auditory attention span rather than working memory per se and provides evidence for a specificity based on the correlational double dissociation.

References

AilionA.S.HortmanK., & KingT.Z. (2017). Childhood brain tumors: A systematic review of the structural neuroimaging literatureNeuropsychology Review27220244. doi: 10.1007/s11065-017-9352-6 CrossRefGoogle ScholarPubMed
AilionA.S.KingT.Z.WangL.FoxM.E.MaoH.MorrisR.M., & CrossonB. (2016). Cerebellar atrophy in adult survivors of childhood cerebellar tumorJournal of International Neuropsychological Society22(5), 501511. doi: 10.1017/s1355617716000138 CrossRefGoogle ScholarPubMed
AilionA.S.RobertsS.R.CrossonB., & KingT.Z. (2019). Neuroimaging of the component white matter connections and structures within the cerebellar-frontal pathway in posterior fossa tumor survivorsNeuroImage. Clinical23101894. doi: 10.1016/j.nicl.2019.101894 CrossRefGoogle ScholarPubMed
AukemaE.J.CaanM.W.OudhuisN.MajoieC.B.VosF.M.RenemanL., … Schouten-van MeeterenA.Y. (2009). White matter fractional anisotropy correlates with speed of processing and motor speed in young childhood cancer survivorsInternational Journal of Radiation Oncology, Biology, Physics74(3), 837843. doi: 10.1016/j.ijrobp.2008.08.060 CrossRefGoogle ScholarPubMed
BaddeleyA. (1996). The fractionation of working memoryProceedings of the National Academy of Sciences93(24), 1346813472. Retrieved from http://www.pnas.org/content/93/24/13468.abstract CrossRefGoogle ScholarPubMed
BartzokisG.LuP.H.HeydariP.CouvretteA.LeeG.J.KalashyanG., … AltshulerL.L. (2012). Multimodal magnetic resonance imaging assessment of white matter aging trajectories over the lifespan of healthy individualsBiological Psychiatry72(12), 10261034. doi: 10.1016/j.biopsych.2012.07.010 CrossRefGoogle ScholarPubMed
BecharaA.TranelD.DamasioH.AdolphsR.RocklandC., & DamasioA.R. (1995). Double dissociation of conditioning and declarative knowledge relative to the amygdala and hippocampus in humansScience (New York, N.Y.)269(5227), 11151118https://doi.org/10.1126/science.7652558 CrossRefGoogle ScholarPubMed
BenjaminiY. & HochbergY. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testingJournal of the Royal Statistical Society57(1), 289300. doi: 10.2307/2346101 Google Scholar
BennettC.M.WolfordG.L., & MillerM.B. (2009). The principled control of false positives in neuroimagingSocial Cognitive and Affective Neuroscience4, 417422. doi: 10.1093/scan/nsp053 CrossRefGoogle Scholar
Ben-YehudahG.GuedicheS., and FiezJ.E. (2007). Cerebellar contributions to verbal working memory: Beyond cognitive theoryThe Cerebellum6, 193201.CrossRefGoogle Scholar
BisleyJ.W. and GoldbergM.E. (2003). Neuronal activity in the lateral intraparietal area and spatial attentionScience2998186.CrossRefGoogle Scholar
BlackF.W., & StrubR.L. (1978). Digit repetition performance in patients with focal brain damageCortex14(1), 1221.CrossRefGoogle ScholarPubMed
BlumenfeldH. (2010). Neuroanatomy through Clinical Cases (2nd ed.). Sunderland, MA: Sinauer Associates, Inc., ISBN 978-0-87893.Google Scholar
BohsaliA.TriplettW.SudhyadhomA.GullettJ.M.McGregorK.FitzGeraldD.B., … CrossonB. (2015). Broca’s area – Thalamic connectivityBrain and Language141C8088. doi: 10.1016/j.bandl.2014.12.001 CrossRefGoogle Scholar
BrodmannK. (1909). Vergleichende lokalisationslehre der großhirnrinde: In ihren prinzipienLeipzig, GermanyBarth.Google Scholar
BrownJ. (1958). Some tests of the decay theory of immediate memoryQuarterly Journal of Experimental Psychology10(1), 1221. doi: 10.1080/17470215808416249.CrossRefGoogle Scholar
BunceD. & MacreadyA. (2005). Processing speed, executive function, and age differences in remembering and knowingThe Quarterly Journal of Experimental Psychology A58(1), 155168. doi: 10.1080/02724980443000197 CrossRefGoogle ScholarPubMed
CascioC.J.GerigG., & PivenJ. (2007). Diffusion tensor imaging: Application to the study of the developing brainJournal of the American Academy of Child and Adolescent Psychiatry46(2), 213223.CrossRefGoogle Scholar
CataniM.Dell’acquaF.VerganiF.MalikF.HodgeH.RoyP., … Thiebaut de SchottenM. (2012). Short frontal lobe connections of the human brainCortex48(2), 273291. doi: 10.1016/j.cortex.2011.12.001 CrossRefGoogle ScholarPubMed
ChenS.H. & DesmondJ.E. (2005). Cerebrocerebellar networks during articulatory rehearsal and verbal working memory tasksNeuroimage24(2), 332338.CrossRefGoogle ScholarPubMed
Colon-PerezL.M.SpindlerC.GoicocheaS.TriplettW.ParekhM.MontieE., … MareciT.H. (2015). Dimensionless, Scale Invariant, Edge Weight Metric for the Study of Complex Structural NetworksPlos One10(7), 129. doi: 10.1371/journal.pone.0131493 CrossRefGoogle Scholar
DelisD.C.KaplanE., & KramerJ.H. (2001). Delis-Kaplan (D-KEFS) Executive Function System Technical ManualSan Antonio, TXThe Psychological Corporation.Google Scholar
DennisM.FrancisD.J.CirinoP.T.SchacharR.BarnesM.A., & FletcherJ.M. (2009). Why IQ is not a covariate in cognitive studies of neurodevelopmental disordersJournal of the International Neuropsychology Society15(3), 331343. doi: 10.1017/S1355617709090481 CrossRefGoogle Scholar
DesikanR.S.SegonneF.FischlB.QuinnB.T.DickersonB.C.BlackerD., … KillianyR.J. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interestNeuroimage31(3), 968980. doi: 10.1016/j.neuroimage.2006.01.021 CrossRefGoogle ScholarPubMed
DesmondJ.GabrieliJ.WagnerA.GinierB., & GloverG. (1997). Lobular patterns of cerebellar activation in verbal working-memory and finger-tapping tasks as revealed by functional MRIThe Journal of Neuroscience17(24), 96759685.CrossRefGoogle ScholarPubMed
DoricchiF & TomaiuoloF. (2003). The anatomy of neglect without hemianopia: a key role for parietal–frontal disconnection? NeuroReport14, 22392243.CrossRefGoogle Scholar
DoricchiF.Thiebaut de SchottenM.TomaiuoloF., & BartolomeoP. (2008). White matter (dis)connections and gray matter (dys)functions in visual neglect: gaining insights into the brain networks of spatial awarenessCortex44(8), 983995. doi: 10.1016/j.cortex.2008.03.006 CrossRefGoogle ScholarPubMed
FordA.Colon-PerezL.TriplettW.T.GullettJ.M.MareciT.H., & FitzgeraldD.B. (2013). Imaging white matter in human brainstemFrontiers in Human Neuroscience7(July), 400. doi: 10.3389/fnhum.2013.00400 CrossRefGoogle ScholarPubMed
FriedericiA.D.HahneA., & von CramonD.Y. (1998). First-pass versus second-pass parsing processes in a Wernicke’s and a Broca’s aphasic: electrophysiological evidence for a double dissociationBrain and Language62(3), 311341https://doi.org/10.1006/brln.1997.1906 CrossRefGoogle Scholar
GertonB.K.BrownT.T.Meyer-LindenbergA.KohnP.HoltJ.L.OlsenR.K., & BermanK.F. (2004). Shared and distinct neurophysiological components of the digits forward and backward tasks as revealed by functional neuroimagingNeuropsychologia42(13), 17811787. doi: 10.1016/j.neuropsychologia.2004.04.023 CrossRefGoogle ScholarPubMed
HoaglinD.C. & IglewiczB. (1987). Fine tuning some resistant rules for outlier labelingJournal of American Statistical Association8211471149.CrossRefGoogle Scholar
HoeftF.Barnea-GoralyN.HaasB.W.GolaraiG.NgD.MillsD., … ReissA.L. (2007). More is not always better: increased fractional anisotropy of superior longitudinal fasciculus associated with poor visuospatial abilities in Williams syndromeJournal of Neuroscience27(44), 1196011965. doi: 10.1523/jneurosci.3591-07.2007 CrossRefGoogle Scholar
JayakarR.KingT.Z.MorrisR., & NaS. (2015). Hippocampal volume and auditory attention on a verbal memory task with adult survivors of pediatric brain tumorNeuropsychology29(2), 303319.CrossRefGoogle ScholarPubMed
JianB. & VemuriB.C. (2007a). A unified computational framework for deconvolution to reconstruct multiple fibers from diffusion weighted MRIIEEE Transactions on Medical Imaging26(11), 1464–71. doi: 10.1109/TMI.2007.907552 CrossRefGoogle ScholarPubMed
JianB. & VemuriB.C. (2007b). Multi-fiber reconstruction from diffusion mri using mixture of Wisharts and Sparse DeconvolutionInformation Processing in Medical Imaging20384395.CrossRefGoogle ScholarPubMed
JianB.VemuriB.C.ÖzarslanE.CarneyP.R., & MareciT.H. (2007). A novel tensor distribution model for the diffusion-weighted MR signalNeuroImage37(1), 164–76. doi: 10.1016/j.neuroimage.2007.03.074 CrossRefGoogle ScholarPubMed
JissendiPBaudryS, & BaleriauxD (2008). Diffusion tensor imaging (DTI) and tractography of the cerebellar projections to prefrontal and posterior parietal cortices: A study at 3T. Journal of Neuroradiology, 35, 4250.CrossRefGoogle Scholar
KamaliA.FlandersA.E.BrodyJ.HunterJ.V., & HasanK.M. (2014). Tracing superior longitudinal fasciculus connectivity in the human brain using high resolution diffusion tensor tractographyBrain Structure and Function219(1), 269281. doi: 10.1007/s00429-012-0498-y CrossRefGoogle ScholarPubMed
KarlsgodtK.H.van ErpT.G.PoldrackR.A.BeardenC.E.NuechterleinK.H., & CannonT.D. (2008). Diffusion tensor imaging of the superior longitudinal fasciculus and working memory in recent-onset schizophreniaBiological Psychiatry63(5), 512518. doi: 10.1016/j.biopsych.2007.06.017 CrossRefGoogle ScholarPubMed
KellyR.M. & StrickP.L. (2003). Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primateThe Journal of neuroscience: The official journal of the Society for Neuroscience2384328444.CrossRefGoogle ScholarPubMed
KhongP.L.KwongD.L.ChanG.C.ShamJ.S.ChanF.L., & OoiG.C. (2003). Diffusion-tensor imaging for the detection and quantification of treatment-induced white matter injury in children with medulloblastoma: A pilot studyAJNR. American Journal of Neuroradiology24(4), 734740.Google ScholarPubMed
KieferM.ApelA., & WeisbrodM. (2002). Arithmetic fact retrieval and working memory in schizophreniaSchizophrenia Research53(3), 219227.CrossRefGoogle Scholar
KingT.Z.AilionA.S.FoxM.E., & HufstetlerS.M. (2017). Neurodevelopmental model of long-term outcomes of adult survivors of childhood brain tumorsChild Neuropsychology121. doi: 10.1080/09297049.2017.1380178 Google ScholarPubMed
KingT.Z. & Na.S. (2016). Cumulative Neurological Factors Predict Long-term Outcomes in Adult Survivors of Childhood Brain TumorsChild Neuropsychology22(6), 748760. doi: 10.1080/09297049.2015.1049591 CrossRefGoogle Scholar
KingT.Z.NaS., & MaoH. (2015a). Neural underpinnings of working memory in adult survivors of childhood brain tumorsJournal of the International Neuropsychological Society21(7), 494505. doi: 10.1017/S135561771500051X CrossRefGoogle ScholarPubMed
KingT.Z.WangL., & MaoH. (2015b). Disruption of white matter integrity in adult survivors of childhood brain tumors: Correlates with long-term intellectual outcomesPLOS One10(7), e0131744. doi: 10.1371/journal.pone.0131744 CrossRefGoogle ScholarPubMed
LawN.BouffetE.LaughlinS.LaperriereN.BriereM.E.StrotherD., … MabbottD. (2011). Cerebello-thalamo-cerebral connections in pediatric brain tumor patients: impact on working memoryNeuroImage56(4), 22382248. doi: 10.1016/j.neuroimage.2011.03.065 CrossRefGoogle ScholarPubMed
LawN.GreenbergM.BouffetE.LaughlinS.TaylorM.D.MalkinD., … MabbottD. (2015a). Visualization and segmentation of reciprocal cerebrocerebellar pathways in the healthy and injured brainHuman Brain Mapping36(7), 26152628. doi: 10.1002/hbm.22795 CrossRefGoogle ScholarPubMed
LawN.GreenbergM.BouffetE.TaylorM.D.LaughlinS.StrotherD., … MabbottD.J. (2012). Clinical and neuroanatomical predictors of cerebellar mutism syndromeNeuro-Oncology14(10), 12941303. doi: 10.1093/neuonc/nos160 CrossRefGoogle ScholarPubMed
LawN.SmithM.L.GreenbergM.BouffetE.TaylorM.D.LaughlinS., … MabbottD. (2015b). Executive function in paediatric medulloblastoma: The role of cerebrocerebellar connectionsJournal of Neuropsychology. doi: 10.1111/jnp.12082 Google ScholarPubMed
LezakM.D.HowiesonD.B.BiglerE., & TranelD. (2012Neuropsychological Assessment5th EditionNew YorkOxford University Press.Google Scholar
MakrisN.KennedyD.N.McInerneyS.SorensenA.G.WangR.CavinessV.S. Jr, & PandyaD.N. (2005). Segmentation of subcomponents within the superior longitudinal fascicle in humans: A quantitative, invivo, DT-MRI studyCerebral Cortex 15854869.CrossRefGoogle Scholar
MarvelC.L. & DesmondJ.E. (2010). The contributions of cerebro-cerebellar circuitry to executive verbal working memoryCortex46(7), 880895. doi: 10.1016/j.cortex.2009.08.017 CrossRefGoogle ScholarPubMed
MerchantT.E.HuaC.H.ShuklaH.YingX.NillS., & OelfkeU. (2008). Proton versus photon radiotherapy for common pediatric brain tumors: Comparison of models of dose characteristics and their relationship to cognitive functionPediatric Blood & Cancer51(1), 110117. doi: 10.1002/pbc.21530 CrossRefGoogle ScholarPubMed
MesulamM.M. (1981). A cortical network for directed attention and unilateral neglectAnnals of Neurology10309325.CrossRefGoogle ScholarPubMed
MicklewrightJ.L.KingT.Z.MorrisR.D., & KrawieckiN. (2008). Quantifying pediatric neuro-oncology risk factors: development of the neurological predictor scaleJournal of Child Neurology23(4), 455458. doi: 10.1177/0883073807309241 CrossRefGoogle ScholarPubMed
MillerG.A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing informationPsychological Review63(2), 8197. doi: 10.1037/h0043158 CrossRefGoogle ScholarPubMed
MillerD.C. (2013). Essentials of School Neuropsychological Assessment (2nd ed.). Hoboken, NJJohn Wiley & Sons, Inc.Google Scholar
MukherjeeP.BermanJ.I.ChungS.W.HessC.P., & HenryR.G. (2008). Diffusion tensor MR imaging and fiber tractography: theoretic underpinningsAJNR American Journal of Neuroradiology29(4), 632641. doi: 10.3174/ajnr.A1051 CrossRefGoogle ScholarPubMed
MulhernR.K.PalmerS.L.ReddickW.E.GlassJ.O.KunL.E.TaylorJ., … GajjarA. (2001). Risks of young age for selected neurocognitive deficits in medulloblastoma are associated with white matter lossJournal of Clinical Oncology19(2), 472479.CrossRefGoogle ScholarPubMed
NaidichT.P.DuvernoyH.M.DelmanB.N.SorensenA.G.KolliasS.S., & HaackeE.M. (2009). Duvernoy’s Atlas of the Human Brain Stem and Cerebellum High-Field MRI: Surface Anatomy, Internal Structure, Vascularization and 3D Sectional AnatomyWien, AustriaSpringer CrossRefGoogle Scholar
NomuraE.M.GrattonC.VisserR.M.KayserA.PerezF., & D’EspositoM. (2010). Double dissociation of two cognitive control networks in patients with focal brain lesionsProceedings of the National Academy of Sciences of the United States of America107(26), 1201712022. doi: 10.1073/pnas.1002431107 CrossRefGoogle ScholarPubMed
OnoM.KubikS., & AbernatheyC.D. (1990). Atlas of the Cerebral SulciNew YorkThieme.Google Scholar
OsborneJ.W. & OverbayA. (2004). The power of outliers (and why researchers should always check for them)Practical Assessment, Research & Evaluation9(6), 18.Google Scholar
OstromQ.T.de BlankP.M.KruchkoC.PetersenC.M.LiaoP.FinlayJ.L., … Barnholtz-SloanJ.S. (2015). Alex’s lemonade stand foundation infant and childhood primary brain and central nervous system tumors diagnosed in the United States in 2007-2011Neuro-oncology16(Suppl 10), x1–x36. doi: 10.1093/neuonc/nou327 CrossRefGoogle ScholarPubMed
PalmerS.L. (2008). Neurodevelopmental impact on children treated for medulloblastoma: a review and proposed conceptual modelDevelopmental Disabilities Research Reviews14(3), 203210. doi: 10.1002/ddrr.32 CrossRefGoogle ScholarPubMed
PalmerS.L.GlassJ.O.LiY.OggR.QaddoumiI.ArmstrongG.T., … ReddickW.E. (2012). White matter integrity is associated with cognitive processing in patients treated for a posterior fossa brain tumorNeuro-oncology14(9), 11851193. doi: 10.1093/neuonc/nos154 CrossRefGoogle ScholarPubMed
PalmerS.L.ReddickW.E.GlassJ.O.GajjarA.GoloubevaO., & MulhernR.K. (2002). Decline in corpus callosum volume among pediatric patients with medulloblastoma: longitudinal MR imaging studyAJNR American Journal of Neuroradiology23(7), 10881094.Google ScholarPubMed
PetersonL.R. & PetersonM.J. (1959). Short-term retention of individual verbal itemsMulhern. doi: 10.1037/h0049234. PMID 14432252.Google ScholarPubMed
ReddickW.E.RussellJ.M.GlassJ.O.et al. (2000). Subtle white matter volume differences in children treated for medulloblastoma with conventional or reduced-dose cranial-spinal irradiationMagnetic Resonance Imaging18787793.CrossRefGoogle ScholarPubMed
ReddickW.E.GlassJ.O.PalmerS.L.WuS.GajjarA.LangstonJ.W., … MulhernR.K. (2005). Atypical white matter volume development in children following craniospinal irradiationNeuro-oncology7(1), 1219. doi: 10.1215/S1152851704000079 CrossRefGoogle ScholarPubMed
ReinholdH.S.CalvoW.HopewellJ.W., & Van Den BregA.P. (1990). Development of blood vessel-related radiation damage in the fimbria of the central nervous systemInternational Journal of Radiation Oncology Biology Physics183742.CrossRefGoogle ScholarPubMed
RiggsL.BouffetE.LaughlinS.LaperriereN.LiuF.SkocicJ., … MabbottD.J. (2014). Changes to memory structures in children treated for posterior fossa tumorsJournal of the International Neuropsychological Society20(2), 168180. doi: 10.1017/s135561771300129x CrossRefGoogle ScholarPubMed
RobertsS.R. (2017). The left hemisphere’s structural connectivity for the inferior frontal gyrus, striatum, and thalamus, and intra-thalamic topography. (Master’s thesis). Georgia State University, Atlanta, GA.Google Scholar
RueckriegelS.M.BruhnH.ThomaleU.W., & Hernaiz DrieverP. (2015). Cerebral white matter fractional anisotropy and tract volume as measured by MR imaging are associated with impaired cognitive and motor function in pediatric posterior fossa tumor survivorsPediatric Blood & Cancer62(7), 12521258. doi: 10.1002/pbc.25485 CrossRefGoogle ScholarPubMed
ShanZ.Y.LiuJ.Z.GlassJ.O.GajjarA.LiC.S., & ReddickW.E. (2006). Quantitative morphologic evaluation of white matter in survivors of childhood medulloblastomaMagnetic Resonance Imaging24(8), 10151022. doi: 10.1016/j.mri.2006.04.015 CrossRefGoogle ScholarPubMed
ShiffrinR.M. & NosofskyR.M. (1994). Seven plus or minus two: A commentary on capacity limitationsPsychological Review101357361.CrossRefGoogle ScholarPubMed
SmithA. (1982). Symbol Digit Modality TestLos Angeles, CAWestern Psychological Services.Google Scholar
SmithK.M. (2016). Corpus callosum and word reading in adult survivors of childhood posterior fossa tumors. (Doctoral dissertation). Georgia State University, Atlanta, GA.Google Scholar
SongS.K.YoshinoJ.LeT.Q.LinS.J.SunS.W.CrossA.H., & ArmstrongR.C. (2005). Demyelination increases radial diffusivity in corpus callosum of mouse brainNeuroimage26132140.CrossRefGoogle ScholarPubMed
SpreenO. & StraussE. (1998). A Compendium of Neuropsychological Tests: Administration, Norms, and Commentary (2nd ed.). New York, NYOxford University Press.Google Scholar
StussD.StethemL., & PelchatG. (1988). Three tests of attention and rapid information processing: An extensionClinical Neuropsychologist2(3), 246250.CrossRefGoogle Scholar
TaiwoZ.NaS., & KingT.Z. (2017The Neurological Predictor Scale: A predictive tool for neurocognitive late effects in survivors of childhood brain tumorsPediatric Blood and Cancer64(1), 172179. doi: 10.1002/pbc.26203 CrossRefGoogle Scholar
Thiebaut de SchottenM.Dell’AcquaF.ForkelS.J.SimmonsA.VerganiF.MurphyD.G., & CataniM. (2011). A lateralized brain network for visuospatial attentionNatural Neuroscience14(10), 12451246. doi: 10.1038/nn.2905 CrossRefGoogle ScholarPubMed
TurkenA.U. & DronkersN.F. (2011). The neural architecture of the language comprehension network: Converging evidence from lesion and connectivity analysesFrontiers Systems Neuroscience51. doi: 10.3389/fnsys.2011.00001 CrossRefGoogle ScholarPubMed
UrbanskiM.Thiebaut de SchottenM.RodrigoS.CataniM.OppenheimC.TouzeE.ChokronS.MederJ.-F.LevyR.DuboisB., & BartolomeoP. (2008). Brain networks of spatial awareness: Evidence from diffusion tensor imaging tractographyJournal of Neurology, Neurosurgery and Psychiatry79598601.CrossRefGoogle ScholarPubMed
ViallonM.CuvinciucV.DelattreB.MerliniL.Barnaure-NachbarI.Toso-PatelS., … HallerS. (2015). State-of-the-art MRI techniques in neuroradiology: Principles, pitfalls, and clinical applicationsNeuroradiology57(5), 441467. doi: 10.1007/s00234-015-1500-1 CrossRefGoogle ScholarPubMed
WaxmanS.G. (2009). Clinical NeuroanatomyNew YorkMcGraw-Hill Education.Google Scholar
WechslerD. (1997). Wechsler Memory Scale – Third Edition. ManualSan Antonio, TXThe Psychological Corporation.Google Scholar
WechslerD. (1999). WASI ManualSan AntonioPsychological Corporation.Google Scholar
WeinbergJ.DillerL.GerstmanL., & SchulmanP. (1972). Digit span in right and left hemiplegicsJournal of Clinical Psychology28(3), 361.3.0.CO;2-5>CrossRefGoogle ScholarPubMed
WolfeK.R.Madan-SwainA., & KanaR.K. (2012). Executive dysfunction in pediatric posterior fossa tumor survivors: a systematic literature review of neurocognitive deficits and interventionsDevelopment Neuropsychology37(2), 153175. doi: 10.1080/87565641.2011.632462 CrossRefGoogle ScholarPubMed
WoodsR.P.GraftonS.T.HolmesC.J.CherryS.R., & MazziottaJ.C. (1998). Automated image registration: I. General methods and intrasubject, intramodality validationJournal of Computer Assisted Tomography22139152.CrossRefGoogle ScholarPubMed
ZhangJ.X.LeungH.C., & JohnsonM.K. (2003). Frontal activations associated with accessing and evaluating information in working memory: An fMRI studyNeuroimage20(3), 15311539.CrossRefGoogle Scholar

Online Therapy Session Request

Book your first 30min session for free

Answer these questions about yourself to get started.

This will help us match you with the right counselor